姜卫平(2015)

一、简介
姜卫平,19726月出生,湖南人,中共党员,二级教授,博士生导师,长江学者特聘教授,国家杰出青年基金获得者,武汉大学科学技术发展研究院院长,武汉大学卫星导航定位技术研究中心主任。长期从事高精度卫星导航定位理论与技术及工程应用研究。主持和参与国家重点研发计划、国家自然科学基金、国家“863”和“973”计划等项目100余项,发表论文200余篇(其中,SCI 100余篇),出版专著2部,获国家科技进步二等奖3(排名122),省部级科技进步特等奖3项、一等奖10项。入选国家万人计划领军人才、国家中国青年科技奖、国家百千万人才工程、国家测绘地理信息局科技领军人才、首届全国十大测绘科技创新人物、中国测绘学会会士,是国家级有突出贡献中青年专家和国务院特殊津贴专家。
二、教育与工作经历
教育经历
1997/9 - 2001/7,武汉大学,大地测量学与测量工程,博士
1995/9 - 1997/7,武汉测绘科技大学,大地测量学与测量工程,硕士
1991/9 - 1995/7,武汉测绘科技大学,测绘工程,学士
工作经历
2023/07 -至今,武汉大学,科学技术发展研究院,院长/教授
2016/10 -至今,武汉大学,卫星导航定位技术研究中心,主任/教授
2005/10 -至今,武汉大学,卫星导航定位技术研究中心,教授/博士生导师
2008/03 – 2016/09,武汉大学,卫星导航定位技术研究中心,副主任/教授
2016/01 - 2018/12,德国,斯图加特大学,访问教授,每年1-2个月
2008/01 - 2010/12,德国,斯图加特大学,访问教授,每年3个月
2007/03 - 2007/12,德国,斯图加特大学,访问教授
2005/08 - 2005/10,冰岛,Nordic Volcanological Institute,访问研究员
2003/08 - 2004/08,冰岛,Nordic Volcanological Institute,博士后
2001/07 - 2005/09,武汉大学,卫星导航定位技术研究中心,讲师,副教授
2000/08 - 2000/10,美国,ALASKA大学地球物理研究所,访问学者
 
同时,兼任中国卫星导航定位协会大数据专委会主任、中国测绘学会位置服务工作委员会主任、导航与位置服务国家测绘地理信息局重点实验室主任,也是《测绘学报》、《武汉大学学报》等期刊编委以及国际大地测量协会(IAG)和欧洲地球科学联合会会(EGU)成员。
 
三、研究项目
 
主持和参与国家自然科学基金、国家“863”和“973”计划等项目100余项,主要包括:
1.        国家重点研发计划,SQ2018YFC150052,综合利用空间观测技术的大地震孕育发生变形时空特征研究,2018/12-2021/12,主持。
2.        国家自然科学基金创新研究群体,41721003,卫星大地测量学理论与方法及其应用,2018/01-2021/12,第2
3.        湖北省技术创新专项重大项目,2018AAA066,高精度北斗实时定位技术及其在变形监测中的示范应用,2018/01-2019/12,主持。
4.        北京未来城市设计高精尖创新中心研究项目,UDC 2018031321,城市空间信息一体化平台关键技术研究,2018/01-2019/12,校外首席科学家。
5.        国家杰出青年科学基金项目,41525014,坐标时间序列非线性变化的物理机制,2016/01-2020/12,主持。
6.        长江学者奖励计划,多系统、大规模GNSS网数据处理理论方法及其应用研究,2014/01-2018/12,主持。
7.        DAAD Thematic network57173947Modern Geodetic Space Techniques for Global Change Monitoring2015/06-2020/06,协调员。
8.        国家自然科学基金面上项目,41374033GPS 坐标时间序列中环境负载和热膨胀效应的影响研究,2014/01-2017/12,主持。
9.        国家自然科学基金国际合作项目,41210006,地球重力场精细结构和时变效应及其在国家高程基准现代化中的研究,2013/01-2016/12,第2
10.    国家973计划,2012CB957700,近百年极地冰层和全球及典型区域海平面变化机理精密定量研究,2012/01-2016/12,子课题主持。
11.    国家863计划,2012AA12A209,高精度定位服务系统及应用示范,2012/01-2014/12,子课题主持。
12.    国家自然科学基金面上项目,41074022,顾及非线性变化的GPS测站位置时间序列分析方法研究,2011/01-2013/12,主持。
13.    开发项目,09NM07001GPS Monitoring System for Surface Deformation of XiLongchi Upper Reservoir2009/02-2011/02,主持。
14.    新世纪人才计划,NCET-07-0633,多种多代卫星测高数据的联合处理方法技术及应用,2008/01-2010/12,主持。
15.    国家863 计划,2007AA12Z339652,大规模GNSS 基准站网数据处理与服务关键技术,2007/07-2010/07,主持。
16.    国家863 计划,2006AA12Z309,卫星导航定位中精密高程确定的关键技术,2007/01-2008/12,第2
17.    国家自然科学基金青年科学基金项目,40304001,用卫星测高数据研究内陆水域的水位变化及其与环境的相关性,2004/01-2006/12,主持。
 
四、专著及论文
专著:
姜卫平. GNSS基准站网数据处理方法与应用. 武汉大学出版社. 2017
主要论文:
[1]     Jiang Weiping*, Wang Jian, Li, Zhao. et al. A new deep self-attention neural network for GNSS coordinate time series prediction. GPS Solution 28, 3 (2024).
[2]     Jiang Weiping*, Liu Tianjun, Chen Hua, et al. Multi-frequency phase observable-specific signal bias estimation and its application in the precise point positioning with ambiguity resolution[J]. GPS Solutions, 2023, 27(1): 4.
[3]     Inner core static tilt inferred from intradecadal oscillation in the Earth’s rotation[J]. Nature Communications, 2023, 14(1): 8130. (通讯作者)
[4]     Pan Yuanjin, Jiang Weiping*, Ding Hao, et al. Intradecadal Fluctuations and ThreeDimensional Crustal Kinematic Deformation of the Tianshan and Pamir Derived From MultiGeodetic Imaging[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(1): e2022JB025325.
[5]     Pan Yuanjin, Jiang Weiping, Ding Hao, et al. Interannual variability of vertical land motion over High Mountain Central Asia from GPS and GRACE/GRACE-FO observations[J]. GPS Solutions, 2023, 27(4): 168.
[6]     Xuexi Liu, Weiping Jiang, et al. BDS-3/BDS-2 FCB estimation considering different influencing factors and Precise Point Positioning with ambiguity resolution[J]. Advances in Space Research, 2023.
[7]     Xuexi Liu, Weiping Jiang, et al. An extended inter-system biases model for precise point positioning considering accurate common deviations between multi-GNSS[J]. Measurement, 2023, 206: 112306.
[8]     Ju Boxiao, Jiang Weiping*, Tao Jun, et al. Performance evaluation of GNSS kinematic PPP and PPP-IAR in structural health monitoring of bridge: Case studies[J]. Measurement, 2022, 203: 112011.
[9]     Jiang Weiping*, Chen Yan, Chen Qusen, et al. High precision deformation monitoring with integrated GNSS and ground range observations in harsh environment[J]. Measurement, 2022, 204: 112179.
[10]Zhou Xingyu, Chen Hua, Jiang Weiping*, et al. A new ambiguity resolution method for LEO precise orbit determination[J]. Journal of Geodesy, 2022, 96(7): 49.
[11]Liu Tianjun, Chen Hua, Jiang Weiping, et al. Assessing the exchanging satellite attitude quaternions from CNES/CLS and their application in the deep eclipse season[J]. GPS Solutions, 2022, 26: 1-14.
[12]Xi Ruijie, Qin Yue, Jiang Weiping, et al. Water Level Retrieval Using a posteriori Residual of GNSS Pseudorange and Carrier-Phase Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[13]Li Wudong, Li Zhao, Jiang Weiping*, et al. A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province[J]. Remote Sensing, 2022, 14(5): 1295.
[14]Song Chuanfeng, Jiang Weiping, Chen Hua, et al. An improved GNSS orbit extrapolation method for real-time PPP users[J]. Advances in Space Research, 2022, 69(12): 4263-4273.
[15]Jin Taoyong, Xiao Mingyu, Jiang Weiping, et al. An adaptive method for nonlinear sea level trend estimation by combining EMD and SSA[J]. Earth and Space Science, 2021, 8(3): e2020EA001300.
[16]Song Chuanfeng, Chen Hua, Jiang Weiping*, et al. An effective interpolation strategy for mitigating the day boundary discontinuities of precise GNSS orbit products[J]. GPS Solutions, 2021, 25(3): 99.
[17]Ma Jun, Li Zhao, Jiang Weiping, et al. A new threedimensional noise modeling method based on singular value decomposition and its application to CMONOC GPS network[J]. Earth and Space Science, 2021, 8(2): e2020EA001250.
[18]Hu Minzhang, Jin Taoyong, Jiang Weiping, et al. Bathymetry model in the northwestern pacific ocean predicted from satellite altimetric vertical gravity gradient anomalies and ship-board depths[J]. Marine Geodesy, 2022, 45(1): 24-46.
[19]Wang Jian, Jiang Weiping*, Li Zhao, et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote Sensing, 2021, 13(16): 3328.
[20]Chen Hua, Liu Xuexi, Jiang Weiping, et al. Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning[J]. Advances in Space Research, 2021, 68(10): 4113-4128.
[21]Xi Ruijie, Meng Xiaolin, Jiang Weiping, et al. A refined SNR based stochastic model to reduce site-dependent effects[J]. Remote Sensing, 2020, 12(3): 493.
[22]Liu Tianjun, Jiang Weiping*, Laurichesse D, et al. Assessing GPS/Galileo real-time precise point positioning with ambiguity resolution based on phase biases from CNES[J]. Advances in Space Research, 2020, 66(4): 810-825.
[23]Li Wudong, Jiang Weiping, Li Zhao, et al. Extracting common mode errors of regional GNSS position time series in the presence of missing data by variational Bayesian principal component analysis[J]. Sensors, 2020, 20(8): 2298.
[24]An Xiangdong, Meng Xiaolin, Chen Hua, Weiping Jiang* et al. Combined precise orbit determination of GPS and GLONASS with ambiguity resolution[J]. Journal of Geodesy, 2019, 93: 2585-2603.
[25]Xuexi Liu, Weiping Jiang*, Hua Chen, et al. An analysis of inter-system biases in BDS/GPS precise point positioning [J]. GPS Solutions, 2019, 23(4): 1-14.
[26]Xuexi Liu, Weiping Jiang, Zhao Li, Hua Chen, Wen Zhao. Comparison of convergence time and positioning accuracy among BDS, GPS and BDS/GPS precise point positioning with ambiguity resolution [J]. Advances in Space Research, 2019, 63(11): 3489-3504.
[27]Huang Liangke, Weiping Jiang*, Liu Lilong, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J]. Journal of Geodesy, 2019, 93: 159-176.
[28]Chen Hua, Weiping Jiang, Li Jiancheng. Multi-GNSS relative positioning with fixed inter-system ambiguity[J]. Remote Sensing, 2019, 11(4): 454.
[29]Liu Xuexi, Chen Hua, Jiang Weiping, et al. Modeling and assessment of GPS/Galileo/BDS precise point positioning with ambiguity resolution[J]. Remote Sensing, 2019, 11(22): 2693.
[30]Jiang Weiping*, Zhao Wen, Chen Hua, et al. Analysis of BDS fractional cycle biases and PPP ambiguity resolution[J]. Sensors, 2019, 19(21): 4725.
[31]Zhou Xingyu, Jiang Weiping, Chen Hua, et al. Improving the GRACE kinematic precise orbit determination through modified clock estimating[J]. Sensors, 2019, 19(19): 4347.
[32]Yuan Peng, Jiang Weiping*, Wang Kaihua, et al. Effects of spatiotemporal filtering on the periodic signals and noise in the GPS position time series of the crustal movement observation network of China[J]. Remote Sensing, 2018, 10(9): 1472.
[33]Chen Qusen, Jiang Weiping*, Meng Xiaolin, et al. Vertical deformation monitoring of the suspension bridge tower using GNSS: A case study of the forth road bridge in the UK[J]. Remote Sensing, 2018, 10(3): 364.
[34]Li Zhao, Chen Wu, Jiang Weiping, et al. The magnitude of diurnal/semidiurnal atmospheric tides (S1/S2) and their impacts on the continuous GPS coordinate time series[J]. Remote Sensing, 2018, 10(7): 1125.
[35]Yuan Peng, Li Zhao, Jiang Weiping, et al. Influences of environmental loading corrections on the nonlinear variations and velocity uncertainties for the reprocessed global positioning system height time series of the crustal movement observation network of China[J]. Remote Sensing, 2018, 10(6): 958.
[36]Xi Ruijie, Jiang Weiping*, Meng Xiaolin, et al. Rapid initialization method in real-time deformation monitoring of bridges with triple-frequency BDS and GPS measurements[J]. Advances in Space Research, 2018, 62(5): 976-989.
[37]Jiang Weiping*, Ma Jun, Li Zhao, et al. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California[J]. Advances in Space Research, 2018, 61(10): 2521-2530.
[38]Xi Ruijie, Meng Xiaolin, Jiang Weiping*, et al. GPS/GLONASS carrier phase elevation-dependent stochastic modelling estimation and its application in bridge monitoring[J]. Advances in Space Research, 2018, 62(9): 2566-2585.
[39]Xi Ruijie, Jiang Weiping, Meng Xiaolin, et al. Bridge monitoring using BDS-RTK and GPS-RTK techniques[J]. Measurement, 2018, 120: 128-139.
[40]Xi Ruijie, Zhou Xiaohui, Jiang Weiping, et al. Simultaneous estimation of dam displacements and reservoir level variation from GPS measurements[J]. Measurement, 2018, 122: 247-256.
[41]Chen Qusen, Chen Hua, Jiang Weiping, et al. A new cycle slip detection and repair method for single-frequency GNSS data[J]. The Journal of Navigation, 2018, 71(6): 1492-1510.
[42]Wang Kaihua, Chen Hua, Jiang Weiping, et al. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series[J]. Journal of Geophysics and Engineering, 2018, 15(2): 554-567.
[43]Wang Kaihua, Jiang Weiping*, Chen Hua, et al. Analysis of seasonal signal in GPS short-baseline time series[J]. Pure and Applied Geophysics, 2018, 175: 3485-3509.
[44]Jiang Weiping*, An Xiangdong, Chen Hua, et al. A new method for GLONASS inter-frequency bias estimation based on long baselines[J]. GPS Solutions, 2017, 21: 1765-1779.
[45]Jiang Weiping*, Yuan Peng, Chen H, et al. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China[J]. Scientific reports, 2017, 7(1): 5874.
[46]Deng Liansheng, Jiang Weiping*, Li Zhao, et al. Assessment of second-and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series[J]. Journal of geodesy, 2017, 91: 207-227.
[47]Jiang Weiping*, Ma Yifang, Zhou Xiaohui, et al. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake[J]. Journal of Seismology, 2017, 21: 1599-1612.
[48]Jiang Weiping*, Xi Ruijie, Chen Hua, et al. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China[J]. Advances in Space Research, 2017, 59(3): 843-857.
[49]Feng Jiandi, Jiang Weiping, Wang Zhengtao, et al. Regional TEC model under quiet geomagnetic conditions and low-to-moderate solar activity based on CODE GIMs[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161: 88-97.
[50]Jiang Weiping, Zhou Xiaohui*. Effect of the span of Australian GPS coordinate time series in establishing an optimal noise model[J]. Science China Earth Sciences, 2015, 58(4): 523-539. ( SCI )
[51]Zhao Qian, Jiang Weiping*, Xu Xinyu, et al. Feasibility study on application of satellite formations for eliminating the influence from aliasing error of ocean tide model[J]. Science China Earth Sciences, 2015, 58(3): 474-481. ( SCI )
[52]Chen Hua, Jiang Weiping*, Ge Maorong. Efficient High-Rate Satellite Clock Estimation for PPP Ambiguity Resolution Using Carrier-Ranges[J]. Sensors, 2014, 14(1): 22300-22312. ( SCI )
[53]Jiang Weiping, Wang Li, Niu Xiaoji*, et al. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation, Sensors, 2014, 14(10): 19371-19401. ( SCI )
[54]Jiang Weiping*, Deng Liansheng, Li Zhao, et al. Effects on noise properties of GPS time series caused by higher-order ionospheric corrections[J]. Advances in Space Research, 2014, 53(7): 1035-1046. ( SCI )
[55]Li Zhao, Jiang Weiping*, Ding Wenwu, et al. Estimates of Minor Ocean Tide Loading Displacement and Its Impact on Continuous GPS Coordinate Time Series[J]. Sensors, 2014, 14(3): 5552-5572. ( SCI )
[56]Chen Hua*, Jiang Weiping, Ge Maorong, et al. An enhanced strategy for GNSS data processing of massive networks[J]. Journal of Geodesy, 2014, 88(9): 857-867. ( SCI )
[57]Jiang Weiping*, Li Zhao, van Dam Tonie, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7): 687-703. ( SCI )
[58]Jiang Weiping*, Li Zhao, Liu Hongfei, et al. Cause Analysis of the NonLinear Variations of the IGS Reference Station Coordinate Time Series in China[J]. Chinese Journal of Geophysics, 2013, 56(4): 340-351. ( SCI )
[59]Jin Taoyong, Li Jiancheng, Jiang Weiping*, et al. Reply to: Parker A. Comment on “Low-frequency sea level variation and its correlation with climate events in the Pacific”[J]. Chinese Science Bulletin, 2013, 14(58): 1714-1716. ( SCI )
[60]Jiang Weiping*, Zou Xuan, Tang Weiming. A New Kind of RealTime PPP Method for GPS SingleFrequency Receiver Using CORS Network[J]. Chinese Journal of Geophysics, 2012, 55(3): 284-293. ( SCI )
[61]Jin Taoyong, Li Jiancheng, Jiang Weiping*, et al. Low-frequency sea level variation and its correlation with climate events in the Pacific[J]. Chinese Science Bulletin, 2012, 57(27): 3623-3630. ( SCI )
[62]Árnadóttir T*, Lund B, Jiang Weiping, et al. Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland[J]. Geophysical Journal International, 2009, 177(2): 691-716. ( SCI )
[63]Jiang Weiping*, Zhan Biwei, Liu Youwen. New model of Antarctic plate motion and its analysis[J]. Chinese Journal of Geophysics, 2009, 52(1): 23-32. ( SCI )
[64]Árnadóttir T*, Jiang Weiping*, Feigl K L, et al. Kinematic models of plate boundary deformation in southwest Iceland derived from GPS observations[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 2006, 111(B7). ( SCI )
[65]Jiang Weiping*, Li Jiancheng, Wang Zhengtao. Determination of global mean sea surface WHU2000 using multi-satellite altimetric data[J]. Chinese Science Bulletin, 2002, 47(19): 1664-1668. ( SCI )
[66]Li Jiancheng*, Zhang Shoujian, Zou Xiancai, Jiang Weiping. Precise orbit determination for GRACE with zero-difference kinematic method[J]. Chinese Science Bulletin, 2010, 55(7): 600-606. ( SCI )
[67]Jin Taoyong*, Li Jiancheng, Wang Zhengtao, Jiang Weiping. Global Ocean Mass Variations in Recent Four Years and Its Spatial and Temporal Characteristics[J]. Chinese Journal of Geophysics, 2010, 53(1): 26-34. ( SCI )
[68]Wang Zhengtao, Li Jiancheng, Jiang Weiping, et al. Determination of Earth Gravity Field Model WHU-GM-05 Using Grace Gravity Data[J]. Chinese Journal of Geophysics, 2008, 51(5): 967-975. ( SCI )
[69]Chu Yonghai, Li Jiancheng, Jiang Weiping, et al. Monitoring level fluctuations of the lakes in the Yangtze River basin from radar[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(1&2): 63-70. ( SCI )
[70]Árnadóttir T, Geirsson H, Jiang Weiping. Crustal deformation in Iceland: Plate spreading and earthquake deformation[J]. Jökull, 2008, 58: 59-74. ( SCI )
[71]Geirsson H, Árnadóttir T, Völksen C, Jiang Weiping, et al. Current plate movements across the Mid-Atlantic Ridge determined from 5 years of continuous GPS measurements in Iceland[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 2006, 111(B9). ( SCI )
[72]Árnadóttir T, Jónsson S, Pollitz F F, Jiang Weiping, et al. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 2005, 110(B12). ( SCI )
[73]Chen Qizhi, Freymueller J T, Yang Zhiqiang, Xu Caijun, Jiang Weiping et al. Spatially variable extension in southern Tibet based on GPS measurements[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 2004, 109(B9). ( SCI )
[74]Liu Jingnan, Xu Caijun, Song Chenghua, Shi Chuang, Jiang Weiping et al. Using repeated precise gps campaigns for research of present-day crustal movement and strain in the Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2001, 46(8): 694-698. ( SCI )
[75]Xu Caijun, Liu Jingnan, Song Chenghua, Jiang Weiping et al. GPS measurements of present-day uplift in the Southern Tibet[J]. Earth, planets and space, 2000, 52(10): 735-739. ( SCI )
[76]姜卫平,许才军,李志伟,. 利用空间观测技术研究青海玛多7.4级地震孕育发生变形时空特征[J]. 地球物理学报,2022,65(2):495-508.
[77]姜卫平,李昭,魏娜,. 大地测量坐标框架建立的进展与思考[J]. 测绘学报,2022,51(7):1259-1270.
[78]姜卫平,梁娱涵,余再康,. 卫星定位技术在水利工程变形监测中的应用进展与思考[J]. 武汉大学学报(信息科学版),2022,47(10):1625-1634.
[79]周晓慧, 杨艺林, 姜卫平*, . GNSS 影像及其时空特征初探[J]. 地球物理学报, 2020, 63(1): 155-171.
[80]姜卫平,郭迟,左文炜. 我国导航与位置服务的进展及思考[J]. 测绘通报,2020(1):1-4,25.
[81]姜卫平. 海洋测绘和内陆水域监测的卫星大地测量关键技术及应用[J]. 中国测绘,2019(3):21-25.
[82]姜卫平,王锴华,李昭,. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版),2018,43(12):2112-2123.
[83]姜卫平. 卫星导航定位基准站网的发展现状、机遇与挑战[J]. 测绘学报,2017,46(10):1379-1388.
[84]姜卫平,马一方,邓连生,. 毫米级地球参考框架的建立方法与展望[J]. 测绘地理信息,2016,41(4):1-6,12.
[85]姜卫平,周伯烨,李昭. 大气负载效应对不同纬度IGS测站的影响[J]. 测绘科学,2016,41(4):28-32.
[86]姜卫平,王锴华,邓连生,. 热膨胀效应对 GNSS 基准站垂向位移非线性变化的影响[J]. 测绘学报,2015(5):473-480.
[87]姜卫平,周晓慧. 澳大利亚GPS坐标时间序列跨度对噪声模型建立的影响分析[J]. 中国科学(地球科学),2014,44(11):2461-2478.
[88]姜卫平,夏传义,李昭,环境负载对区域GPS基准站时间序列的影响分析,测绘学报,20144312):1217-1223 (EI)
[89]姜卫平,赵伟,赵倩,徐新禹,邹贤才,新一代探测地球重力场的卫星编队,测绘学报,2014432):111-117(EI)
[90]姜卫平,袁鹏,田挚,肖玉钢,区域CORS组网中的坐标基准统一方法,武汉大学学报(信息科学版)2014,(05):566-570(EI)
[91]姜卫平,刘鸿飞,周晓慧,李昭,利用连续GPS观测数据分析水库长期变形,测绘学报,2012415):682-689(EI)
[92]姜卫平,刘鸿飞,刘万科,贺湧,西龙池上水库GPS变形监测系统研究及实现,武汉大学学报(信息科学版)20123708):949-952(EI)
[93]姜卫平,赵倩,刘鸿飞,杨凯,子网划分在大规模GNSS基准站网数据处理中的应用,武汉大学学报(信息科学版)2011364):389-391(EI)
[94]姜卫平,李昭,刘万科,周晓慧,顾及非线性变化的地球参考框架建立与维持的思考,武汉大学学报(信息科学版)2010356):665-669(EI)
[95]姜卫平,邹璇,精密GPS定位中大气模型误差的研究与分析,武汉大学学报(信息科学版)20083311):1106-1109(EI)
[96]姜卫平,周晓慧,刘经南,许才军,青藏高原地壳运动与应变的GPS监测研究,测绘学报,2008373):285-292(EI)
[97]姜卫平,马强,刘鸿飞,CORS系统中坐标移动转换方法及应用,武汉大学学报(信息科学版)2008338):775-778(EI)
[98]姜卫平,褚永海,李建成,姚永顺,利用ENVISAT测高数据监测青海湖水位变化,武汉大学学报(信息科学版)2008331):64-67(EI)
[99]姜卫平,章传银,李建成,重力卫星主要有效载荷指标分析与确定,武汉大学学报(信息科学版)200328104-109(EI)
[100]           姜卫平,刘经南,叶世榕,GPS形变监测网基线处理中系统误差的分析,武汉大学学报(信息科学版)2001263):196-199(EI)
[101]           马一方,姜卫平,利用全球电离层地图分析芦山地震电离层异常变化,武汉大学学报(信息科学版)2015409)。(EI)
[102]           冯建迪,姜卫平,王正涛. 基于IGS的南北半球TEC非对称性研究[J]. 武汉大学学报(信息科学版),2015,10:1354-1359.
[103]           邓连生,姜卫平,李昭,彭利峰,电离层高阶项改正对参考框架实现及测站坐标影响分析,武汉大学学报(信息科学版)2015402):193-198(EI)
[104]           丁士俊,姜卫平,线性半参数模型非参数假设检验理论和方法,武汉大学学报(信息科学版)20143912):1467-1471(EI)
[105]           刘鸿飞,姜卫平,汪燕麟,陈华,伍岳CGCS2000框架下区域CORS站数据联合处理,武汉大学学报(信息科学版)2014,(02):161-165(EI)
[106]           彭利峰,姜卫平,金涛勇,赵倩,利用最新GOCE重力场模型确定南极绕极流,武汉大学学报(信息科学版)2013,(11):1266-1270(EI)
[107]           赵倩,姜卫平,徐新禹,邹贤才,彭利峰,低轨道卫星重复周期的设计方法及其对重力场反演的影响,测绘学报,2013,(02):191-195+202(EI)
[108]           邹璇,姜卫平,苏利娜,刘经南,一种利用动态参考网实现单频接收机精密单点定位的新方法,武汉大学学报(信息科学版)2013384):403-407(EI)
[109]           刘任莉,李建成,姜卫平,李昭,联合GRACEGPS比较山西省垂向地表形变,武汉大学学报(信息科学版)2013,(4):426-430(EI)
[110]           曾波,张彦芬,姜卫平,王力,山西CORS网基准站速度场分析,武汉大学学报(信息科学版)2012,(12):1401-1404+1513(EI)
[111]           李昭,姜卫平,刘鸿飞,屈小川,中国区域IGS基准站坐标时间序列噪声模型建立与分析,测绘学报,2012414):496-503(EI)
[112]           邹璇,姜卫平,汪顺喜,李陶,单频接收机高精度近实时GNSS气象研究,武汉大学学报(信息科学版)2012371):58-62(EI)
[113]           金涛勇,李建成,姜卫平,王正涛,基于多源卫星测高数据的新一代全球平均海面高模型,测绘学报,2011406):723-729(EI)
[114]           徐新禹,李建成,姜卫平,邹贤才,基于空域最小二乘法求解GOCE卫星重力场的模拟研究,测绘学报,2011406):697-702(EI)
[115]           邹贤才,李建成,姜卫平,张守建,徐新禹,卫星重力资料分析的同解法研究及其仿真,测绘学报,2010394):344-348(EI)
[116]           杨凯,刘鸿飞,赵倩,姜卫平,绝对天线相位改正模型对GPS精密数据处理的影响,武汉大学学报(信息科学版)2010356):694-697(EI)
[117]           王正涛,靳祥生,党亚民,姜卫平,低轨卫星精密定轨的初轨向量与力模型参数数值积分误差分析,武汉大学学报(信息科学版)2009346):728-731(EI)
[118]           徐新禹,李建成,姜卫平,邹贤才,由重力场模型快速计算沿轨重力梯度观测值,武汉大学学报(信息科学版)2009342):226-230(EI)
[119]           刘友文,姜卫平,鄂栋臣,周晓惠,南极国际GPS联测的海潮位移改正,武汉大学学报(信息科学版)20073210):899-901(EI)
[120]           李建成,褚永海,姜卫平,徐新禹,利用卫星测高资料监测长江中下游湖泊水位变化,武汉大学学报(信息科学版)20073202):144-147(EI)
[121]           罗佳,姜卫平,汪海洪,邹贤才,中国区域SST卫星重力场模型精度分析,武汉大学学报(信息科学版)20063103):199-202(EI)
[122]           刘智敏,刘经南,姜卫平,李陶,遗传算法解算GPS短基线整周模糊度的编码方法研究,武汉大学学报(信息科学版)20063107):607-609(EI)
[123]           王正涛,李建成,晁定波,姜卫平,利用卫星测高数据研究海面高月异常变化和厄尔尼诺现象的相关性,武汉大学学报(信息科学版)2004298):699-703(EI)
[124]           孙红星,阎利,姜卫平,高精度GPS差分载波相位多普勒/INS新型全组合解算机载TLS外方位元素,武汉大学学报(信息科学版)2004297):642-645
[125]           陈俊勇,许厚泽,胡建国,党亚明,姜卫平23IUGG大会有关大地测量的最新进展,测绘学报,2004331):12-21(EI)
[126]           罗佳,李建成,姜卫平,利用卫星资料研究中国南海海地地形,武汉大学学报(信息科学版)2002273):256-260(EI)
[127]           李建成,姜卫平,长距离跨海高程基准传递方法的研究,武汉大学学报(信息科学版)2001266):453-458(EI)
[128]           刘经南,施闯,许才军,姜卫平,利用局域复测GPS网研究中国大陆块体现今地壳运动速度场,武汉大学学报(信息科学版)2001263):189-194(EI)
[129]           李建成,姜卫平,章磊,联合多种测高数据建立高分辨率中国海平均海面高模型,武汉大学学报(信息科学版)2001261):40-44(EI)
 
五、获奖与荣誉
1.        国家科学技术进步二等奖,“海洋测绘与内陆水域监测的卫星大地测量关键技术及应用”,2018年,排名第1
2.        国家科学技术进步二等奖,“测绘基准和空间信息快速获取关键技术及其在灾害应急测绘中的应用”,2011年,排名第2
3.        国家科学技术进步二等奖,“我国区域精密高程基准面建立的关键技术及推广应用”,2008年,排名第2
4.        湖北省科技进步一等奖,2022年,排名第1
5.        测绘科技进步一等奖,2020年,排名第1
6.        湖北省科技进步特等奖,2018年,排名第2
7.        卫星导航定位科技进步特等奖,2016年,排名第1
8.        测绘科技进步一等奖,2013年,排名第1
9.        测绘科技进步一等奖,2010年,排名第2
10.    测绘科技进步一等奖,2005年,排名第3
 
1.        中国测绘学会会士,2023年
2.        首届全国十大测绘科技创新人物,2019年
3.        中国工程院第十一届光华工程科技奖青年奖,2016
4.        国家杰出青年基金项目,2016
5.        国家百千万人才工程,2014
6.        国务院特殊津贴专家,2014
7.        长江学者奖励计划,2013
8.        第十二届中国青年科技奖,2011
9.        德国斯图加特大学“客座教授突出贡献奖”,2008
10.    新世纪人才支持计划,2007
11.    夏坚白院士测绘事业创业奖,2007

六、学生培养(含课堂教学)
主讲课程
主讲《测绘基准建立维持的理论与方法》、《GPS原理及其应用》、《GPS测量与数据处理》等课程.
 
七、联系方式

办公地点:武汉大学信息学部星湖综合大楼15
电子邮件:wpjiang@whu.edu.cn
办公电话:027-68778985
    真:027-68778971
通讯地址:武汉市珞喻路129号武汉大学信息学部星湖综合大楼卫星导航定位技术研究中心
邮政编码:430079
 
 


版权所有: 武汉大学卫星导航定位技术研究中心 联系地址: 中国·武汉市珞瑜路129号 邮编: 430079 E-mail:gnsscenter@whu.edu.cn Tel/Fax:027-68778971/68778971(办公室) 技术支持:武汉楚玖科技有限公司